


fat distribution: relationships with carotid intima-media thickness and large artery stiffness at the age of 36 years." J Hypertens 22(1): 145-155.


45. Kemper, H. C., I. Bakker, et al. (2002). "Validation of a physical activity
questionnaire to measure the effect of mechanical strain on bone mass." Bone 30(5): 799-804.


135. van Bussel, B. C., R. M. Henry, et al. (2011). "Fish consumption in healthy adults is associated with decreased circulating biomarkers of endothelial dysfunction and inflammation during a 6-year follow-up." J Nutr 141(9):
1719-1725.


receptor gene variant is associated with increased body fatness in youngsters."
Clin Endocrinol (Oxf) 71(4): 518-523.
gene CAG repeat polymorphism in longitudinal height and body composition in
receptor-alpha gene polymorphisms and body composition in children and
an IGF-I gene polymorphism and body fatness: differences between
costs and income - how are they related?" Public Health Nutr 13(10): 1599-1608.
of stoop and squat lifting at different frequencies." Ergonomics 34(5): 613-624.
youth is a more important factor for peak bone mass than calcium intake." J Bone
Miner Res 9(7): 1089-1096.
dairy questionnaire with a dietary history in young adults." Int J Epidemiol 24(4):
763-770.
recall of calcium intake by a dairy questionnaire in young Dutch adults." J Nutr
126(11): 2843-2850.
172. Welten, D. C., H. C. Kemper, et al. (1997). "Longitudinal development and
tracking of calcium and dairy intake from teenager to adult." Eur J Clin Nutr 51(9):
612-618.
30-year developmental patterns of body fat and body fat distribution and its
vascular properties: the Amsterdam Growth and Health Longitudinal Study." Nutr
Diabetes 3: e90.
175. Wijnstok, N. J., J. W. Twisk, et al. (2010). "Inflammation markers are
associated with cardiovascular diseases risk in adolescents: the Young Hearts